
JOURNAL OF COMPUTATIONAL PHYSICS 84, 31 l-325 (1989)

A Scalable Architecture for Lattice-Gas Simulations

STEVEN D. KUGELMASS AND KENNETH STEIGLITZ

Department of Computer Science, Princeton University,
Princeton, New Jersey 08544

Received April 12, 1988; revised November 16, 1988

We describe a computer architecture for simulating the Frish-Hasslacher-Pomeau (FHP)
lattice-gas model for fluid flow. It consists of a l-dimensional pipeline of identical full-custom
chips hosted by a general-purpose computer. Sixty-four-pin DIP chips for the site-update rule
were fabricated by MOSIS in 3y CMOS, each containing more than 65,000 transistors. The
chips have been tested and perform reliably at a 7 MHz clock rate. There are two processors
per chip, so each chip is capable of 14 million site-updates/s/chip. A IO-chip pipeline was
interfaced and tested with a SUN workstation. The present test interface transfers a word at
a time through the CPU, and also requires the host to handle boundary conditions, so it
achieves only about 2 million site-updates/s. This is still about 16 times faster than a software
simulation on the DEC VAX 8650. With external memory and a pipeline processor to handle
boundary conditions, this lo-chip pipeline should be capable of 140 million site-updates/s. The
pipelined architecture has a property we call linear speedup. That is, n processors of fixed size
and cost provide n times the throughput of one processoron the same problem instance, with
no increase in memory bandwidth. 0 1989 Academic Press. Inc.

1. INTR~DucTI~N

Many problems are characterized by the fact that they deal with data values
distributed on a regular mesh or lattice. They arise in a wide variety of applications
such as image processing, computer vision, physical modeling, and the solution of
partial differential equations. These problems often require tremendous computa-
tional resources and are typically solved on large general-purpose supercomputers.
Special purpose SIMD and MIMD processor systems have also been built for these
problems [141.

The cellular automaton (CA) is a simple type of lattice computation that was
studied in the early days of computer science as a model of self-replication [S].
A cellular automaton is built from the following components:

(1) A discrete state space C over (0, k - 1).
(2) A set of sites called the domain A. This is a discrete regular lattice in n

dimensions. Each site in the domain has associated with it a value from Z and this
is referred to as the state of the site. The state of all the sites taken collectively is
called the state of the CA.

311
0021-9991/89 53.00

Copyright 0 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

312 KUGELMASS AND STEIGLITZ

(3) An update rule @, which gives the state at time t + 1 from the state at time
t using the states of sites from a fixed neighborhood in the n-dimensional lattice. CD
can therefore be thought of as a local re-writing rule.

More recently, people have studied cellular automata because they may be able
to mimic the way that computations are performed in nature-they model the
simultaneous local interaction of simple objects distributed over a large area or
volume [6]. Stephen Wolfram [7, 81 published a series of papers describing an
experimental study of some properties of a class of l-dimensional cellular automata,
a study made possible by vastly increased computational power. He showed that
very simple cellular automata could exhibit kinds of behavior usually associated
with much more complex systems.

In 1986, Frisch, Hasslacher, and Pomeau [9] showed that a cellular automaton
with a hexagonally connected geometry can simulate fluid dynamics, extending
previous work on lattice gasses (see [lo], for example). More precisely, they
showed that in the limit of large lattice size, appropriate state averages of their
automaton converge to solutions to the 2-dimensional Navier-Stokes equation.
Simulations of their automaton have verified many of the qualitative features of
actual fluid flow [111 as well as some quantitative features, such as momentum
density profile [12]. This was perhaps the earliest concrete example of a cellular
automaton offering a competitive alternative to traditional methods for a problem
as difficult and important as fluid dynamics [13-151, at least in certain regimes.

Toffoli and Margolus [16, 171 built a high-performance cellular-automaton
machine that is programmable and very easy to use, but not easy to make faster.
In this paper we describe the design and implementation of an architecture for
lattice computations that can, in principle, be indefinitely pipelined and extended to
provide arbitrarily high throughput for a given problem. It has the property we call
linear speedup-a property not shared by other special purpose architectures
dedicated to problems of this genre [16-201. We use the FHP lattice-gas cellular
automaton [9] as the touchstone for our work because it has many of the proper-
ties that are characteristic of lattice computations: small storage per site, large
number of sites, small neighborhood per site, and complete uniformity of the
algorithm.

2. THE FHP LATTICE GAS MODEL

The FHP ,lattice gas model is a discrete particle model for fluid dynamics [9].
It is based on a regular hexagonal lattice, giving each site six nearest neighbors.
Particles move synchronously around the lattice at unit speed, colliding only at
lattice sites, and possibly scattering as a result. The links along which they move are
bi-directional, and particles can interact only at lattice sites. Two particles traveling
in opposite directions on the same link are not considered to be colliding.

Each site has six neighbors, and outgoing particles may be present on any of

LATTICE-GAS SIMULATIONS 313

FIG. 1. The hexagonal lattice.

these links. (See Fig. 1.) Therefore each site in the lattice has 64 states. However,
some models must also provide for the possibility that there is a particle at rest at
the site (a “center”) and, additionally, that the site may not be part of free space,
but rather may be solid. The “solid” sites are used to compose boundaries and
obstacles for the simulation. This raises the minimum number of bits required to
describe the state of a site from six to eight.

3. SCATTERING RULES

The particles moving in the lattice scatter at the sites according to rules that are
designed to make the simulation converge to solutions of the Navier-Stokes
equation. The rules have two fundamental properties: conservation of mass
(particle number), and conservation of momentum. The rest particles in Rules Cl
and C2 are introduced to lower the effective viscosity. We can still consider energy
to be conserved if we think of them as being internally excited.

Further, the collision rules are designed to minimize a particle’s mean-free-path:
the number of lattice edges it traverses without colliding and scattering with
another particle. The smaller the mean-free-path, the lower the viscosity of the
lattice gas, and the larger the Reynolds number of the simulation. In general, it is
difficult to achieve high Reynolds numbers and we therefore try to have as many
particle interactions (scattering rules) as possible. In the event that a particle cannot
scatter with another when it reaches a lattice site, it continues its trajectory with its
previous velocity undisturbed.

Figure 2 illustrates the particle collision rules. The configuration before the colli-
sion is shown on the left, with the configuration after the collision on the right. In
the case where symmetry would imply the existence of more than one member of
a rule family, only one member is shown. The complete set of rules can be derived

314 KUGELMASS AND STEIGLITZ

3AI
‘.L /

,: /\

4Br
\/ ‘/. /

4BI . ..l? ’ \ ,..:”
/ \

FIG. 2. Particle collision rule classes.

by rotation of the before and after configurations by any multiple of 60”. The small
circle at the site means that a particle is present there at rest.

Obstacles, such as cylinders, plates, or wings, are placed in the lattice by chang-
ing a site from “free-space” to “solid”. While a “free-space” site scatters particles
according to the rules outlined above, a “solid” site behaves differently and there
are several permissible choices. The simplest possibility is to have each particle
reflect back along its incoming path. Another possibility is to have each particle
reflect in such a way that its incident angle equals its reflected angle. Unfortunately,
the latter entails having different kinds of solid sites, depending on position in an
object.

These two choices also correspond to different kinds of boundary-layer effects
[9]. In the first case, the rule leads to a “no-slip” boundary, where the velocity of
the fluid near a surface is zero. The second case corresponds to a “slip” condition;
the fluid next to a boundary can move. We adopt the “no-slip” boundary because
it is simpler and more realistic for the kinds of fluid-dynamic phenomena that we
expect to simulate.

Three of the rule classes, 2B, 3A, and 4B have L and R variants, so called
because they scatter left-ward and right-ward, respectively. It is critical that both of
these scatterings take place with equal probability or a systematic bias will be intro-
duced that will destroy the convergence properties of the simulation. When the
simulation is performed in software, it is a simple matter to “flip a coin” and choose
either an L or an R rule when appropriate. Alternatively, the software simulation

LATTICE-GAS SIMULATIONS 315

can use the R rule during even-numbered generations and the L rule during the
odd-numbered ones (or vice versa). In hardware, however, it is undesirable to “flip
a coin” or to change rules on every generation. Instead, one of the chip’s two
processors performs the R rules all the time, and the other performs the L rules.
This has the effect of placing the L and R rules throughout the lattice in a manner
similar to the squares of a checkerboard. The unbiased spatial distribution is
equivalent (informally) to an unbiased temporal distribution (coin flipping) because
the events of interest occur randomly throughout the lattice and the simulation.

The sequence in which particle collisions are computed at lattice sites is also
critical to the success of the simulation. In concept, the entire lattice is updated
simultaneously, with each update called a generation. In practice, the new site
values can be computed in any sequence provided that particles from generation i
are the only ones used to compute particle velocities for generation i + 1. If this rule
is violated, it is easy to give a configuration and a site update sequence that violates
the mass (and therefore the momentum) conservation law [9].

The net velocity of an ensemble of particles over a small region of the lattice
(spatial averages) yields the hydrodynamic behavior that is sought. This function is
not computed by the special purpose chip; it is done as part of a post-processing
phase.

4. SERIAL PIPELINED ARCHITECTURES FOR LATTICE PROCESSING

The architecture that we adopted is a single serial pipeline (see Fig. 3). This has
the benefit that the bandwith to the processor system is small even though the
number of active processing elements (PE?s) is large. The serial technique has been
used for image processing where the size of the 2-dimensional grid is small and fixed
[21-231, and has also been used to design a high-performance custom processor
for a l-dimensional cellular automaton [24]. The appealing aspects of the serial

FIG. 3. One-dimensional pipeline. The data enters the shift registers (represented by the square
boxes) and is accessed by the next-state function f:

316 KUGELMASS AND STEIGLITZ

architecture are the simplicity of its design, its small area in comparison to other
architectures, and the small input/output bandwidth requirement.

Consider what is required to pipeline a computation. We must guarantee that the
appropriate site values of the correct ages are presented to the computing elements.
In the case of the lattice gas cellular automaton, we can express this data
dependency as

Qf” = fW(4))

where af is the value at lattice site cli at time t, N(aj) is the neighborhood of the
lattice site ai at time t, and f is the function that determines the new value of ai
based on its neighborhood. The cellular automaton requires all the points in the
neighborhood of u, to be the same age in order to compute the new value, aj + ‘.

One-dimensional pipelining also requires a linear ordering of the sites in the
array. That is, we wish to send the values associated with the sites one at a time
into the l-dimensional pipeline and receive the sequence of sites in the same order
possibly some generations later. Therefore, we would like sites that are close
together in the lattice to be close together in the stream, so that the serial PE
can use as little local memory as possible. Unfortunately, there is no sub-linear
embedding of an array into a list [25,26] and so we must store two raster lines on
each chip.

5. WIDE SERIAL ARCHITECTURE

Assume that data from the 2-dimensional array is serialized by a row-major
raster scan. Throughput in a serial architecture can be improved by adding
concurrency at each level of the pipeline. One way to accomplish this is to have
each pipeline stage compute the new value of more than one site each clock period.
For example, if the computation at PE j is at the point where site a, circled, is to
be updated, then PEJ’ contains the data indicated by strike-out in Fig. 4. We could
allow a second PE i’ to compute site a + 1 at the same time if we store just one
more data point (see Fig. 5).

0000000000
OOOY
c 0 ow 3 G 3
~000000
0000000000
0000000000

FIG. 4. Data used by one processing element. A Rectangular lattice is shown for simplicity.

LATTICE-GAS SIMULATIONS 317

0000000000

OOOP

CCO~“,CCCCO

-00000

0000000000

0000000000
FIG. 5. Data used by two parallel processing elements.

The most attractive feature of this scheme is that throughput is increased, but at
a cost of only the incremental amount of memory needed to store the extra sites.
However, there is a price to pay: two new site values are required every clock
period so that two site updates can be performed. The extra PEs require added
bandwidth to and from the chip and this implies that the main memory system
must provide that bandwidth as pins or wires.

As an example, Fig. 6 shows how two PEs on the same chip can cooperate on
a computation. Each square of the shift register holds the value of one site in the
lattice. Every clock period, two new site values are input to the chip, two sites
updated, and their values output to the next chip in the pipeline.

A particle-collision rule-set is chosen from a set of four possibilities by applying
control voltages to two pins of the chip. This permits a small degree of program-
mability of the device and some control over the viscosity of the lattice gas. The
four particle collision rule sets are numbered (refer to Fig. 2 for descriptions of the
rules 2B, 3S, etc.):

0. 2-body, 3-body, centers (2B, 3S, Cl, C2)
1. 2-body, 3-body, centers, 3-body-asymmetric (2B, 3S, 3A, Cl, C2)
2. 2-body, 3-body, centers, 4-body (2B, 3S, Cl, C2, 4B)
3. 2-body, 3-body, centers, 3-body-asymmetric, 4-body (2B, 3S, Cl, C2, 3A,

4B).

FIG. 6. Wide serial architecture. The two processing elements operate in parallel and update two
successive sites.

318 KUGELMASS AND STEIGLITZ

FIG. 7. Basic architectural plan. The boxes marked “R” and “L” correspond to the two processing
elements in Fig. 6.

Each chip consists of three principal parts: the shift-register memory, the
neighborhood generator, and the update processors. The basic architectural plan is
shown in Fig. 7.

The shift registers provide delay to permit 2-dimensional processing of the
l-dimensional data stream. When a data value is entered into a shift register, the
registers emit the value of the site in the same column of the previous line. The shift
registers are not of programmable length; chip area considerations led to a register
length of 256. Each stage in the shift register is wide enough to hold two sites (16
bits) so that the values of 512 sites fit within each of the two shift registers.

The neighborhood generator converts outgoing particle information from the
neighbors of the two sites to be updated into incoming particle information for
those sites. The neighborhood generator is composed of a set of shift registers in
which the required bits are extracted and brought out to the update processors.
These processors map from a site’s incoming particle configuration to its new state
(outgoing particle configuration).

The chip contains two update processors, which compute left- and right-variants
of a rule, respectively. As we mentioned above, this is required for isotropy of
solutions.

With each major clock cycle of the chip, the following activities take place: A new
16-bit word, comprising the states of two lattice sites, is latched into the chip’s shift
registers and neighborhood generator. All other data values in the registers are
shifted forward one stage. When this shift is completed, the neighborhood generator
is then presenting extracted incoming state information for the “current sites” to the
update processors which place the new site values on the output pins. Because of the
latency in the shift registers, the site values emitted are one row above and one
column behind those just accepted.

6. HARDWARE IMPLEMENTATION

The floor plan of the chip is shown in Fig. 8. The majority of the chip real estate
is dedicated to the shift-register memory. The neighborhood generator and the

LATTICE-GAS SIMULATIONS 319

L
FIG. 8. Chip floor plan.

update processors are much smaller. The test circuitry aids in
verification of the chip behavior.

7. UPDATE PROCESSORS

the testing and

The update processors map from the input configuration of a site to its output
configuration (new state). We wanted to provide some degree of flexibility or
programmability over the chip, but at the same time, we wanted to retain the
simplicity, ease of design, and small size of a fixed rule implementation.

There is a spectrum of possible structures, ranging from a Turing machine
equivalent processor to combinational logic. The former offers very general
programmability and flexibility, whereas the latter is very restricted in the functions
that it can compute. What we really want is something between these two extremes.

We chose four sets of collision rules which we knew worked by having simulated
them. We built a PLA that implemented all of them, and found that this PLA was
only twice the size of a PLA that implemented any one of the rule sets. The PLA
is “programmed” by selecting a rule set at the time the inputs are presented. This
is accomplished via two control lines that determine which rule-set number is active
at that time.

One PLA performs R rotations for the 2-body and 4-body cases (rules 2Br and
4Br), and the other performs L rotations (rules 2Bl and 4Bl). Their layouts were
built by programs, no hand layout was necessary in this case. Two programs, al1L.c

320 KUGELMASSAND STEIGLITZ

and allR.c, were used to generate truth tables for the functions. These truth tables
were “minimized” by the program espresso, and the results fed to a PLA generator,
mph. They use a static structure, with pseudo-nMOS pull-ups for the AND and
OR planes.

8. COMPARISON WITH OTHER MACHINES

We refer to the ten-chip prototype constructed at Princeton as LGM-1 (for lat-
tice-gas machine). CAM-6 [16, 171 scans the 2-dimensional array to create a serial
stream of data in the same way as LGM-1, but it is not a pipelined architecture.
It is also designed and tuned for a particular host architecture, the IBM PC. Even
though it is extensible to larger problems, it cannot provide increased throughput
on the same problem. This is where the LGM-1 architecture excels, because it can
be pipelined to achieve nearly an arbitrary speedup on the same problem instance.

Sternberg’s machines [22,27] are significantly more complicated, but they are
pipelined. Even though they are more powerful than the special-purpose processor
of LGM-1, they obtain this power by using more input/output bandwidth. See [26]
for a treatment of computation rate versus input/output bandwidth trade-offs.

In spirit, our work is closest to that of Broderson and Ruetz [21]. They built
separate chips for the various functions of their image processor, including a line-
delay chip that we implemented as shift register. They concatenated their chips in
a pipeline to achieve a final function, which is the composition of the functions of
each chip in the pipeline. Since we perform the same function at each stage of the
computation, we achieve high performance from chip concatenation, whereas
Broderson and Ruetz were forced to make all their chips fast in order for their
system to function at all.

Most of the other work on lattice-gas cellular automata implementation has been
done in software on general purpose computers. The only directly comparable
figures therefore are total throughput. We defer this comparison until the next
section where we discuss the performance of our prototype system, LGM-1.

9. PERFORMANCE LEVELS

We built the lo-chip pipeline and tested it by interfacing it with a SUN 3/16OC
workstation. The chips themselves perform reliably at a clock rate of 7 MHz, or 14
million site-updates/s/chip. The ultimate speed limit of this lo-chip pipeline is there-
fore 140 million site-updates/s, with speedup linear in the number of chips. This
figure is not obtained with the current system for two reasons, neither of which is
fundamental and each of which could be eliminated with further work on interface
and support hardware. Because we view this project primarily as a verification of
the architecture and not as the construction of a production machine, we have not

LATTICE-GAS SIMULATIONS 321

expended the effort necessary to realize this performance. Such effort would be
better spent on a second-generation chip design which includes boundary proces-
sing, as explained below.

The first serious limit to the speed is the interface with the SUN workstation.
Each site value is read and written to the bus, one-at-a-time, by the supervisor
program. The lo-chip pipeline itself can be stepped by the host workstation every
3~s which, since there are 20 updates in the pipeline in one basic cycle, amounts
to 7 million site-updates/s. However, because the complete lattice does not fit in the
pipeline, it is necessary to read and write to the memory of the SUN, which further
slows down the computation. A production machine would eliminate these
problems by using an external memory to hold the complete lattice, so that the
data can be circulated through the pipeline without passing through the host, which
would then be used only for down-loading initial conditions and up-loading results.

The second factor slowing the machine down is the need to treat the boundary
sites differently from interior sites, and that affects not only the speed, but the
extensibility. The boundary conditions of the lattice are not now handled in the
pipeline, but they need to be if the pipeline is to be deepened. Right now, the sites
at the top, bottom, and sides of the lattice are loaded with randomly moving
particles in the host. These particles are moving with an appropriately biased
velocity, and we can think of this computation as a “fan” for the “wind-tunnel.”
(Thus, the finite lattice simulates a section of an infinite lattice without periodic
boundary conditions.) With a lo-chip pipeline these boundaries are accessible to
the host only every 10 generations, and if the pipeline is deepened much beyond
that, the particle distribution becomes seriously biased and the simulation does not
converge. The extra time in the host to detect boundaries and insert random
numbers slows the lo-chip machine down further to about 2 million site-updates/s,
still about 16 times faster than a software simulation on the DEC VAX 8650. Thus
despite the fact that the interface achieves only a small fraction of the potential
speed and should be considered only a testbed, the machine is still useful for
production.

To get around this limitation, both on speed and extensibility, we must provide
fan processors at least every 10 or so chips inside the pipeline because these
intermediate generations are not otherwise accessible. Such a fan processor can be
inserted in the pipeline with no degradation of speed and can in fact be incor-
porated on the chip if space permits. The design of such a fan processor is described
more fully in [30, 311, and sections of it have been built and tested in TTL. The
next generation of the processor chip will use a denser technology and should be
able to include such a fan.

It is difficult to put exact figures on the cost of hardware for a lattice-gas machine
based on this architecture, but some idea of its scale can be given as follows: The
custom chip could be fabricated in quantity (by MOSIS) at less than $100 per chip.
Each 10 chips in the pipeline requires a circuit board, which should cost no more
than another $500. External memory for the lattice sites, holding perhaps 1 or 2
Mbytes, is relatively inexpensive. It is important to realize here that the bandwidth

581/84/Z-5

322 KUGELMASS AND STEIGLITZ

of this memory (2 bytes wide) need be only the 7 MHz clock rate of the chips and
is independent of the length of the pipeline. The cost of the raw materials is there-
fore about $1500 for each 10 chips in the pipeline, plus a few thousand dollars for
the external memory and interface with the SUN, which can now be slow without
interfering with the production rate of the machine. The site values are available in
raster-scan order in a stream and can therefore be used to drive a real-time display.
This is the cost of only the raw materials, assuming the MOSIS fabrication facility
is used for a quantity run of chips, so these figures must be viewed with caution.

Hayot et al. [28] discuss the implementation and performance of the best known
algorithms for the FHP lattice-gas software simulation as executed on several
different general-purpose machines. They also extrapolate to predict the perfor-
mance of larger sibling computers on the same problem.

Hayot et al. report a site-update rate of 2.3 million sites/s on a 32-processor
INTEL iPSC hypercube. An Alliant FX-8 shared memory vector supercomputer
gave only 0.7 million sites/s on the same problem because a large part of the code
had not been vectorized nor made concurrent. We summarize the reported
measured performance of various machines in Table I (from [28]).

The RAP1 machine [29] is a dedicated FHP lattice-gas machine designed and
built at l?cole Normale Superieure in Paris. It uses the same basic architecture as
CAM-6. The Connection Machine is a general-purpose computer composed of
65536 one-bit processors arranged in a multi-dimensional hypercube.

Hayot et al. were able to predict the performance of more powerful hypercube
processor systems by extrapolation. They report a predicted performance of
86 million sites/s on a 128-processor INTEL iPSC-VX, and 120 million sites/s on
a 1024-processor N Cube-lo. As mentioned above, the pipeline architecture
described here, if properly supported with external memory and fan processing in
the pipeline, could achieve a throughput of 14 million site-updates/s/chip.

The lo-chip pipeline interfaced with the SUN workstation was operated con-
tinuously for more than a week without any detected hardware failures and is

TABLE 1

Reported Performance of Different Machines on Lattice-Gas Problems (after [28])

System Lattice
size

Site updates/s

32-processor iPSC 4Kx2K
Alliant FX-8 4Kx4K
CAM-6 256x256
RAPl(ENS Paris) 512 x 256
Connection Machine 4Kx4K
Pipeline Architecture 512x1024

2.3 x lo6
0.7 x lo6
4.0 x 10”
6.5 x IO6
lo9
14 x lo6 per chip (projected)

Nom. The figure for the pipeline architecture is projected from the speed and
size of the chip described in this paper.

LATTICE-GAS SIMULATIONS 323

a b

FIG. 9. Four snapshots of the velocity field of a flow simulation using LGM-1, showing flow from
top to bottom past a bluff plate: (a) top left, after 1000 generations; (b) top right, after 2000; (c) bottom
left, after 3000; (d) bottom right, after 4C00.

324 KUGELMASS AND STEIGLITZ

still in use. We performed simulations of flows over variously shaped objects, and
examples of the results are shown in Fig. 9. The particle density in each case was
0.2, which we know to yield good results and a relatively small fluid viscosity. We
estimate the Reynolds number at 40 for these simulations.

Figure 9 shows snapshots of the velocity field of a flow simulation, taken at
generations 1000 to 4000, for a 512 x 1024 lattice. The fluid flows from top to
bottom past a bluff plate and develops asymmetric vortices in the shadow of the
plate.

We should mention at this point that the lo-chip pipeline built at Princeton, as
well as any other scalable pipeline machine, is controlled entirely from the host. The
user writes a small, simple program in a high-level language that has access to the
external hardware and the lattice data via a few parameters and a virtual address.

10. CONCLUDING REMARKS

The important feature of the pipeline architecture is its extensibility with linear
speedup. More throughput can be bought by adding identical chips to the pipeline,
with no additional demands on memory bandwidth or size.

The lo-chip pipeline built at Princeton is intended primarily as an experiment in
architecture, rather than a serious tool for lattice-gas experimentation, although it
is being used daily. As mentioned, the present system is slowed down considerably
by the interface with the host and its extensibility and speed are both limited by the
absence of a fan processor. If we follow this approach to achieve really massive
parallelism, we also need to study the limiting effects of clock distribution and
reliability in very long pipelines.

ACKNOWLEDGMENTS

We thank Mark Taylor for writing the display software; Tarun Khanna for designing and building
a prototype fan processor, Chumki Basu for documentation; Richard Squier for test coding and timing;
and Mark Greenstreet for helpful discussions. This work was supported in part by NSF Grant MIP-
8705454, U.S. Army Research Office - Durham Contract DAAG29-85-K-0191, and DARPA Contract
NOOO14-82-K-0549. The chips were fabricated by MOSIS.

REFERENCES

1. G. BARNES, R. BROWN, M. KATO, D. KUCK, D. SLOTNICK, AND R. STOKES, IEEE Trans. Compur.
C-17, 746 (1968).

2. K. E. BATCHER, IEEE Trans. Comput. C-29, 836 (1980).
3. D. M. NOSENCHLJNCK AND M. G. LITTMAN, in Proceedings, 23rd Annual Space Conference,

John F. Kennedy Space Center, FL, 1986.
4. S. MANOHAR AND G. M. BAUDET, Technical Report CS-86-06, Department of Computer Science,

Brown University, Providence, RI, 1986 (unpublished).

LATTICE-GAS SIMULATIONS 325

5. J. VON NEUMANN, Theory of Self-Reproducing Systems, edited by A. W. Burks (University of Illinois
Press, Urbana, IL, 1966).

6. R. P. FEYNMAN, Int. J. Theoret. Phys. 21, 467 (1982).
7. S. WOLFRAM, Narure 311, 419 (1984).
8. S. WOLFRAM (Ed.), Theory and Applications of Cellular Automata (World Scientitic, Singapore,

1986).
9. U. FRISCH, B. HASSLACHER, AND Y. POMEAU, Phys. Rev. Left. 56, 1505 (1986).

10. S. HARRIS, Phys. Fluids 9, 1328 (1966).
11. M. VAN DYKE, An Album of Fluid Motion (Parabolic, Stanford, CA, 1982).
12. L. P. KADANOFF, G. R. MCNAMARA, AND G. ZANETTI, Complex Systems 1, 791 (1987).
13. J. R. HERRING, S. A. ORSZAG, R. H. KRAICHNAN, AND D. G. Fox, J. Fluid Mech. 66, 417 (1974).
14. S. A. ORSZAG, J. Fluid Mech. 41, 363 (1970).
15. P. J. ROACHE, Computational Fluid Dynamics (Hermosa, Alburquerque, NM, 1972).
16. T. TOFFOLI, Physica B lOD, 195 (1984).
17. T. TOFFOLI AND N. MARGOLUS, Cellular Automata Machines: A New Environment for Modeling

(MIT Press, Cambridge, MA, 1987).
18. R. B. PEARSON, J. L. RICHARDSON, AND D. TOWSSAINT, J. Comput. Phys. 51. 241 (1983).
19. A. HOOGLAND; J. SPAA, B. SELMAN, AND A. COMPAGNER, J. Comput. Phys. 51, 250 (1983).
20. N. MARGOLUS, T. TOFFOLI, AND G. VICHNIAC, Phys. Rev. Left. 56, 1694 (1986).
21. P. A. RUETZ AND R. W. BRODERSON, IEEE J. Solid-State Circuits SC-22 (1987).
22. S. R. STERNBERG, “Computer Architectures Specialized for Mathematical Morphology,” in Algo-

rirhmically Specialized Parallel Compufers, edited by H. J. Siegel (Academic Press, New York, 1985)
p. 169.

23. J. KITTLER AND M. J. B. DUFF (Eds.), Image Processing Sysfem Architecfures (Research Studies
Press, Wiley, New York, 1985).

24. K. STEICLITZ AND R. R. MORITA, in Proceedings, I985 IEEE In!. Conf on Acousrics, Speech, and
Signal Processing, Tampa, FL, March.

25. A. L. ROSENBERG, SIAM J. Comput. 4, 443 (1975).
26. S. D. KUGELMASS, R. SQUIER, AND K. STEIGLITZ, J. Complex Sysf. 1, 939 (1987).
27. S. R. STERNBERG, “Pipeline Architectures for Image Processing,” in Mulficompufers and Image Pro-

cessing, Algorithms and Programs, edited by L. Uhr (Academic Press, New York, 1982), p. 291.
28. F. HAYOT, M. MANDAL, AND P. SADAYAPPAN, “Implementation and Performance of a Binary Lat-

tice Gas Algorithm on Parallel Processor Systems,” Department of Physics, Ohio State University,
1987 (unpublished).

29. A. CLOUQUEUR AND D. D’HUMIPRES, Complex Syst. 1, 585 (1987).
30. S. D. KUGELMASS, Thesis, Department of Computer Science, Princeton University, Princeton, NJ,

1988 (unpublished).
31. T. KHANNA, Report of Senior Independent Work, Department of Computer Science, Princeton

University, Princeton, NJ, 1988 (unpublished).

