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We describe a computer architecture for simulating the Frish-Hasslacher-Pomeau (FHP) 
lattice-gas model for fluid flow. It consists of a l-dimensional pipeline of identical full-custom 
chips hosted by a general-purpose computer. Sixty-four-pin DIP chips for the site-update rule 
were fabricated by MOSIS in 3y CMOS, each containing more than 65,000 transistors. The 
chips have been tested and perform reliably at a 7 MHz clock rate. There are two processors 
per chip, so each chip is capable of 14 million site-updates/s/chip. A IO-chip pipeline was 
interfaced and tested with a SUN workstation. The present test interface transfers a word at 
a time through the CPU, and also requires the host to handle boundary conditions, so it 
achieves only about 2 million site-updates/s. This is still about 16 times faster than a software 
simulation on the DEC VAX 8650. With external memory and a pipeline processor to handle 
boundary conditions, this lo-chip pipeline should be capable of 140 million site-updates/s. The 
pipelined architecture has a property we call linear speedup. That is, n processors of fixed size 
and cost provide n times the throughput of one processoron the same problem instance, with 
no increase in memory bandwidth. 0 1989 Academic Press. Inc. 

1. INTR~DucTI~N 

Many problems are characterized by the fact that they deal with data values 
distributed on a regular mesh or lattice. They arise in a wide variety of applications 
such as image processing, computer vision, physical modeling, and the solution of 
partial differential equations. These problems often require tremendous computa- 
tional resources and are typically solved on large general-purpose supercomputers. 
Special purpose SIMD and MIMD processor systems have also been built for these 
problems [ 141. 

The cellular automaton (CA) is a simple type of lattice computation that was 
studied in the early days of computer science as a model of self-replication [S]. 
A cellular automaton is built from the following components: 

(1) A discrete state space C over (0, . . . . k - 1). 
(2) A set of sites called the domain A. This is a discrete regular lattice in n 

dimensions. Each site in the domain has associated with it a value from Z and this 
is referred to as the state of the site. The state of all the sites taken collectively is 
called the state of the CA. 
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(3) An update rule @, which gives the state at time t + 1 from the state at time 
t using the states of sites from a fixed neighborhood in the n-dimensional lattice. CD 
can therefore be thought of as a local re-writing rule. 

More recently, people have studied cellular automata because they may be able 
to mimic the way that computations are performed in nature-they model the 
simultaneous local interaction of simple objects distributed over a large area or 
volume [6]. Stephen Wolfram [7, 81 published a series of papers describing an 
experimental study of some properties of a class of l-dimensional cellular automata, 
a study made possible by vastly increased computational power. He showed that 
very simple cellular automata could exhibit kinds of behavior usually associated 
with much more complex systems. 

In 1986, Frisch, Hasslacher, and Pomeau [9] showed that a cellular automaton 
with a hexagonally connected geometry can simulate fluid dynamics, extending 
previous work on lattice gasses (see [lo], for example). More precisely, they 
showed that in the limit of large lattice size, appropriate state averages of their 
automaton converge to solutions to the 2-dimensional Navier-Stokes equation. 
Simulations of their automaton have verified many of the qualitative features of 
actual fluid flow [ 111 as well as some quantitative features, such as momentum 
density profile [12]. This was perhaps the earliest concrete example of a cellular 
automaton offering a competitive alternative to traditional methods for a problem 
as difficult and important as fluid dynamics [13-151, at least in certain regimes. 

Toffoli and Margolus [16, 171 built a high-performance cellular-automaton 
machine that is programmable and very easy to use, but not easy to make faster. 
In this paper we describe the design and implementation of an architecture for 
lattice computations that can, in principle, be indefinitely pipelined and extended to 
provide arbitrarily high throughput for a given problem. It has the property we call 
linear speedup-a property not shared by other special purpose architectures 
dedicated to problems of this genre [ 16-201. We use the FHP lattice-gas cellular 
automaton [9] as the touchstone for our work because it has many of the proper- 
ties that are characteristic of lattice computations: small storage per site, large 
number of sites, small neighborhood per site, and complete uniformity of the 
algorithm. 

2. THE FHP LATTICE GAS MODEL 

The FHP ,lattice gas model is a discrete particle model for fluid dynamics [9]. 
It is based on a regular hexagonal lattice, giving each site six nearest neighbors. 
Particles move synchronously around the lattice at unit speed, colliding only at 
lattice sites, and possibly scattering as a result. The links along which they move are 
bi-directional, and particles can interact only at lattice sites. Two particles traveling 
in opposite directions on the same link are not considered to be colliding. 

Each site has six neighbors, and outgoing particles may be present on any of 
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FIG. 1. The hexagonal lattice. 

these links. (See Fig. 1.) Therefore each site in the lattice has 64 states. However, 
some models must also provide for the possibility that there is a particle at rest at 
the site (a “center”) and, additionally, that the site may not be part of free space, 
but rather may be solid. The “solid” sites are used to compose boundaries and 
obstacles for the simulation. This raises the minimum number of bits required to 
describe the state of a site from six to eight. 

3. SCATTERING RULES 

The particles moving in the lattice scatter at the sites according to rules that are 
designed to make the simulation converge to solutions of the Navier-Stokes 
equation. The rules have two fundamental properties: conservation of mass 
(particle number), and conservation of momentum. The rest particles in Rules Cl 
and C2 are introduced to lower the effective viscosity. We can still consider energy 
to be conserved if we think of them as being internally excited. 

Further, the collision rules are designed to minimize a particle’s mean-free-path: 
the number of lattice edges it traverses without colliding and scattering with 
another particle. The smaller the mean-free-path, the lower the viscosity of the 
lattice gas, and the larger the Reynolds number of the simulation. In general, it is 
difficult to achieve high Reynolds numbers and we therefore try to have as many 
particle interactions (scattering rules) as possible. In the event that a particle cannot 
scatter with another when it reaches a lattice site, it continues its trajectory with its 
previous velocity undisturbed. 

Figure 2 illustrates the particle collision rules. The configuration before the colli- 
sion is shown on the left, with the configuration after the collision on the right. In 
the case where symmetry would imply the existence of more than one member of 
a rule family, only one member is shown. The complete set of rules can be derived 
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FIG. 2. Particle collision rule classes. 

by rotation of the before and after configurations by any multiple of 60”. The small 
circle at the site means that a particle is present there at rest. 

Obstacles, such as cylinders, plates, or wings, are placed in the lattice by chang- 
ing a site from “free-space” to “solid”. While a “free-space” site scatters particles 
according to the rules outlined above, a “solid” site behaves differently and there 
are several permissible choices. The simplest possibility is to have each particle 
reflect back along its incoming path. Another possibility is to have each particle 
reflect in such a way that its incident angle equals its reflected angle. Unfortunately, 
the latter entails having different kinds of solid sites, depending on position in an 
object. 

These two choices also correspond to different kinds of boundary-layer effects 
[9]. In the first case, the rule leads to a “no-slip” boundary, where the velocity of 
the fluid near a surface is zero. The second case corresponds to a “slip” condition; 
the fluid next to a boundary can move. We adopt the “no-slip” boundary because 
it is simpler and more realistic for the kinds of fluid-dynamic phenomena that we 
expect to simulate. 

Three of the rule classes, 2B, 3A, and 4B have L and R variants, so called 
because they scatter left-ward and right-ward, respectively. It is critical that both of 
these scatterings take place with equal probability or a systematic bias will be intro- 
duced that will destroy the convergence properties of the simulation. When the 
simulation is performed in software, it is a simple matter to “flip a coin” and choose 
either an L or an R rule when appropriate. Alternatively, the software simulation 
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can use the R rule during even-numbered generations and the L rule during the 
odd-numbered ones (or vice versa). In hardware, however, it is undesirable to “flip 
a coin” or to change rules on every generation. Instead, one of the chip’s two 
processors performs the R rules all the time, and the other performs the L rules. 
This has the effect of placing the L and R rules throughout the lattice in a manner 
similar to the squares of a checkerboard. The unbiased spatial distribution is 
equivalent (informally) to an unbiased temporal distribution (coin flipping) because 
the events of interest occur randomly throughout the lattice and the simulation. 

The sequence in which particle collisions are computed at lattice sites is also 
critical to the success of the simulation. In concept, the entire lattice is updated 
simultaneously, with each update called a generation. In practice, the new site 
values can be computed in any sequence provided that particles from generation i 
are the only ones used to compute particle velocities for generation i + 1. If this rule 
is violated, it is easy to give a configuration and a site update sequence that violates 
the mass (and therefore the momentum) conservation law [9]. 

The net velocity of an ensemble of particles over a small region of the lattice 
(spatial averages) yields the hydrodynamic behavior that is sought. This function is 
not computed by the special purpose chip; it is done as part of a post-processing 
phase. 

4. SERIAL PIPELINED ARCHITECTURES FOR LATTICE PROCESSING 

The architecture that we adopted is a single serial pipeline (see Fig. 3). This has 
the benefit that the bandwith to the processor system is small even though the 
number of active processing elements (PE?s) is large. The serial technique has been 
used for image processing where the size of the 2-dimensional grid is small and fixed 
[21-231, and has also been used to design a high-performance custom processor 
for a l-dimensional cellular automaton [24]. The appealing aspects of the serial 

FIG. 3. One-dimensional pipeline. The data enters the shift registers (represented by the square 
boxes) and is accessed by the next-state function f: 
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architecture are the simplicity of its design, its small area in comparison to other 
architectures, and the small input/output bandwidth requirement. 

Consider what is required to pipeline a computation. We must guarantee that the 
appropriate site values of the correct ages are presented to the computing elements. 
In the case of the lattice gas cellular automaton, we can express this data 
dependency as 

Qf” = fW(4)) 

where af is the value at lattice site cli at time t, N(aj) is the neighborhood of the 
lattice site ai at time t, and f is the function that determines the new value of ai 
based on its neighborhood. The cellular automaton requires all the points in the 
neighborhood of u, to be the same age in order to compute the new value, aj + ‘. 

One-dimensional pipelining also requires a linear ordering of the sites in the 
array. That is, we wish to send the values associated with the sites one at a time 
into the l-dimensional pipeline and receive the sequence of sites in the same order 
possibly some generations later. Therefore, we would like sites that are close 
together in the lattice to be close together in the stream, so that the serial PE 
can use as little local memory as possible. Unfortunately, there is no sub-linear 
embedding of an array into a list [25,26] and so we must store two raster lines on 
each chip. 

5. WIDE SERIAL ARCHITECTURE 

Assume that data from the 2-dimensional array is serialized by a row-major 
raster scan. Throughput in a serial architecture can be improved by adding 
concurrency at each level of the pipeline. One way to accomplish this is to have 
each pipeline stage compute the new value of more than one site each clock period. 
For example, if the computation at PE j is at the point where site a, circled, is to 
be updated, then PEJ’ contains the data indicated by strike-out in Fig. 4. We could 
allow a second PE i’ to compute site a + 1 at the same time if we store just one 
more data point (see Fig. 5). 

0000000000 
OOOY 
c 0 ow 3 G 3 
~000000 
0000000000 
0000000000 

FIG. 4. Data used by one processing element. A Rectangular lattice is shown for simplicity. 
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FIG. 5. Data used by two parallel processing elements. 

The most attractive feature of this scheme is that throughput is increased, but at 
a cost of only the incremental amount of memory needed to store the extra sites. 
However, there is a price to pay: two new site values are required every clock 
period so that two site updates can be performed. The extra PEs require added 
bandwidth to and from the chip and this implies that the main memory system 
must provide that bandwidth as pins or wires. 

As an example, Fig. 6 shows how two PEs on the same chip can cooperate on 
a computation. Each square of the shift register holds the value of one site in the 
lattice. Every clock period, two new site values are input to the chip, two sites 
updated, and their values output to the next chip in the pipeline. 

A particle-collision rule-set is chosen from a set of four possibilities by applying 
control voltages to two pins of the chip. This permits a small degree of program- 
mability of the device and some control over the viscosity of the lattice gas. The 
four particle collision rule sets are numbered (refer to Fig. 2 for descriptions of the 
rules 2B, 3S, etc.): 

0. 2-body, 3-body, centers (2B, 3S, Cl, C2) 
1. 2-body, 3-body, centers, 3-body-asymmetric (2B, 3S, 3A, Cl, C2) 
2. 2-body, 3-body, centers, 4-body (2B, 3S, Cl, C2, 4B) 
3. 2-body, 3-body, centers, 3-body-asymmetric, 4-body (2B, 3S, Cl, C2, 3A, 

4B). 

FIG. 6. Wide serial architecture. The two processing elements operate in parallel and update two 
successive sites. 
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FIG. 7. Basic architectural plan. The boxes marked “R” and “L” correspond to the two processing 
elements in Fig. 6. 

Each chip consists of three principal parts: the shift-register memory, the 
neighborhood generator, and the update processors. The basic architectural plan is 
shown in Fig. 7. 

The shift registers provide delay to permit 2-dimensional processing of the 
l-dimensional data stream. When a data value is entered into a shift register, the 
registers emit the value of the site in the same column of the previous line. The shift 
registers are not of programmable length; chip area considerations led to a register 
length of 256. Each stage in the shift register is wide enough to hold two sites (16 
bits) so that the values of 512 sites fit within each of the two shift registers. 

The neighborhood generator converts outgoing particle information from the 
neighbors of the two sites to be updated into incoming particle information for 
those sites. The neighborhood generator is composed of a set of shift registers in 
which the required bits are extracted and brought out to the update processors. 
These processors map from a site’s incoming particle configuration to its new state 
(outgoing particle configuration). 

The chip contains two update processors, which compute left- and right-variants 
of a rule, respectively. As we mentioned above, this is required for isotropy of 
solutions. 

With each major clock cycle of the chip, the following activities take place: A new 
16-bit word, comprising the states of two lattice sites, is latched into the chip’s shift 
registers and neighborhood generator. All other data values in the registers are 
shifted forward one stage. When this shift is completed, the neighborhood generator 
is then presenting extracted incoming state information for the “current sites” to the 
update processors which place the new site values on the output pins. Because of the 
latency in the shift registers, the site values emitted are one row above and one 
column behind those just accepted. 

6. HARDWARE IMPLEMENTATION 

The floor plan of the chip is shown in Fig. 8. The majority of the chip real estate 
is dedicated to the shift-register memory. The neighborhood generator and the 
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L 
FIG. 8. Chip floor plan. 

update processors are much smaller. The test circuitry aids in 
verification of the chip behavior. 

7. UPDATE PROCESSORS 

the testing and 

The update processors map from the input configuration of a site to its output 
configuration (new state). We wanted to provide some degree of flexibility or 
programmability over the chip, but at the same time, we wanted to retain the 
simplicity, ease of design, and small size of a fixed rule implementation. 

There is a spectrum of possible structures, ranging from a Turing machine 
equivalent processor to combinational logic. The former offers very general 
programmability and flexibility, whereas the latter is very restricted in the functions 
that it can compute. What we really want is something between these two extremes. 

We chose four sets of collision rules which we knew worked by having simulated 
them. We built a PLA that implemented all of them, and found that this PLA was 
only twice the size of a PLA that implemented any one of the rule sets. The PLA 
is “programmed” by selecting a rule set at the time the inputs are presented. This 
is accomplished via two control lines that determine which rule-set number is active 
at that time. 

One PLA performs R rotations for the 2-body and 4-body cases (rules 2Br and 
4Br), and the other performs L rotations (rules 2Bl and 4Bl). Their layouts were 
built by programs, no hand layout was necessary in this case. Two programs, al1L.c 
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and allR.c, were used to generate truth tables for the functions. These truth tables 
were “minimized” by the program espresso, and the results fed to a PLA generator, 
mph. They use a static structure, with pseudo-nMOS pull-ups for the AND and 
OR planes. 

8. COMPARISON WITH OTHER MACHINES 

We refer to the ten-chip prototype constructed at Princeton as LGM-1 (for lat- 
tice-gas machine). CAM-6 [ 16, 171 scans the 2-dimensional array to create a serial 
stream of data in the same way as LGM-1, but it is not a pipelined architecture. 
It is also designed and tuned for a particular host architecture, the IBM PC. Even 
though it is extensible to larger problems, it cannot provide increased throughput 
on the same problem. This is where the LGM-1 architecture excels, because it can 
be pipelined to achieve nearly an arbitrary speedup on the same problem instance. 

Sternberg’s machines [22,27] are significantly more complicated, but they are 
pipelined. Even though they are more powerful than the special-purpose processor 
of LGM-1, they obtain this power by using more input/output bandwidth. See [26] 
for a treatment of computation rate versus input/output bandwidth trade-offs. 

In spirit, our work is closest to that of Broderson and Ruetz [21]. They built 
separate chips for the various functions of their image processor, including a line- 
delay chip that we implemented as shift register. They concatenated their chips in 
a pipeline to achieve a final function, which is the composition of the functions of 
each chip in the pipeline. Since we perform the same function at each stage of the 
computation, we achieve high performance from chip concatenation, whereas 
Broderson and Ruetz were forced to make all their chips fast in order for their 
system to function at all. 

Most of the other work on lattice-gas cellular automata implementation has been 
done in software on general purpose computers. The only directly comparable 
figures therefore are total throughput. We defer this comparison until the next 
section where we discuss the performance of our prototype system, LGM-1. 

9. PERFORMANCE LEVELS 

We built the lo-chip pipeline and tested it by interfacing it with a SUN 3/16OC 
workstation. The chips themselves perform reliably at a clock rate of 7 MHz, or 14 
million site-updates/s/chip. The ultimate speed limit of this lo-chip pipeline is there- 
fore 140 million site-updates/s, with speedup linear in the number of chips. This 
figure is not obtained with the current system for two reasons, neither of which is 
fundamental and each of which could be eliminated with further work on interface 
and support hardware. Because we view this project primarily as a verification of 
the architecture and not as the construction of a production machine, we have not 
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expended the effort necessary to realize this performance. Such effort would be 
better spent on a second-generation chip design which includes boundary proces- 
sing, as explained below. 

The first serious limit to the speed is the interface with the SUN workstation. 
Each site value is read and written to the bus, one-at-a-time, by the supervisor 
program. The lo-chip pipeline itself can be stepped by the host workstation every 
3~s which, since there are 20 updates in the pipeline in one basic cycle, amounts 
to 7 million site-updates/s. However, because the complete lattice does not fit in the 
pipeline, it is necessary to read and write to the memory of the SUN, which further 
slows down the computation. A production machine would eliminate these 
problems by using an external memory to hold the complete lattice, so that the 
data can be circulated through the pipeline without passing through the host, which 
would then be used only for down-loading initial conditions and up-loading results. 

The second factor slowing the machine down is the need to treat the boundary 
sites differently from interior sites, and that affects not only the speed, but the 
extensibility. The boundary conditions of the lattice are not now handled in the 
pipeline, but they need to be if the pipeline is to be deepened. Right now, the sites 
at the top, bottom, and sides of the lattice are loaded with randomly moving 
particles in the host. These particles are moving with an appropriately biased 
velocity, and we can think of this computation as a “fan” for the “wind-tunnel.” 
(Thus, the finite lattice simulates a section of an infinite lattice without periodic 
boundary conditions.) With a lo-chip pipeline these boundaries are accessible to 
the host only every 10 generations, and if the pipeline is deepened much beyond 
that, the particle distribution becomes seriously biased and the simulation does not 
converge. The extra time in the host to detect boundaries and insert random 
numbers slows the lo-chip machine down further to about 2 million site-updates/s, 
still about 16 times faster than a software simulation on the DEC VAX 8650. Thus 
despite the fact that the interface achieves only a small fraction of the potential 
speed and should be considered only a testbed, the machine is still useful for 
production. 

To get around this limitation, both on speed and extensibility, we must provide 
fan processors at least every 10 or so chips inside the pipeline because these 
intermediate generations are not otherwise accessible. Such a fan processor can be 
inserted in the pipeline with no degradation of speed and can in fact be incor- 
porated on the chip if space permits. The design of such a fan processor is described 
more fully in [30, 311, and sections of it have been built and tested in TTL. The 
next generation of the processor chip will use a denser technology and should be 
able to include such a fan. 

It is difficult to put exact figures on the cost of hardware for a lattice-gas machine 
based on this architecture, but some idea of its scale can be given as follows: The 
custom chip could be fabricated in quantity (by MOSIS) at less than $100 per chip. 
Each 10 chips in the pipeline requires a circuit board, which should cost no more 
than another $500. External memory for the lattice sites, holding perhaps 1 or 2 
Mbytes, is relatively inexpensive. It is important to realize here that the bandwidth 

581/84/Z-5 
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of this memory (2 bytes wide) need be only the 7 MHz clock rate of the chips and 
is independent of the length of the pipeline. The cost of the raw materials is there- 
fore about $1500 for each 10 chips in the pipeline, plus a few thousand dollars for 
the external memory and interface with the SUN, which can now be slow without 
interfering with the production rate of the machine. The site values are available in 
raster-scan order in a stream and can therefore be used to drive a real-time display. 
This is the cost of only the raw materials, assuming the MOSIS fabrication facility 
is used for a quantity run of chips, so these figures must be viewed with caution. 

Hayot et al. [28] discuss the implementation and performance of the best known 
algorithms for the FHP lattice-gas software simulation as executed on several 
different general-purpose machines. They also extrapolate to predict the perfor- 
mance of larger sibling computers on the same problem. 

Hayot et al. report a site-update rate of 2.3 million sites/s on a 32-processor 
INTEL iPSC hypercube. An Alliant FX-8 shared memory vector supercomputer 
gave only 0.7 million sites/s on the same problem because a large part of the code 
had not been vectorized nor made concurrent. We summarize the reported 
measured performance of various machines in Table I (from [28]). 

The RAP1 machine [29] is a dedicated FHP lattice-gas machine designed and 
built at l?cole Normale Superieure in Paris. It uses the same basic architecture as 
CAM-6. The Connection Machine is a general-purpose computer composed of 
65536 one-bit processors arranged in a multi-dimensional hypercube. 

Hayot et al. were able to predict the performance of more powerful hypercube 
processor systems by extrapolation. They report a predicted performance of 
86 million sites/s on a 128-processor INTEL iPSC-VX, and 120 million sites/s on 
a 1024-processor N Cube-lo. As mentioned above, the pipeline architecture 
described here, if properly supported with external memory and fan processing in 
the pipeline, could achieve a throughput of 14 million site-updates/s/chip. 

The lo-chip pipeline interfaced with the SUN workstation was operated con- 
tinuously for more than a week without any detected hardware failures and is 

TABLE 1 

Reported Performance of Different Machines on Lattice-Gas Problems (after [28]) 

System Lattice 
size 

Site updates/s 

32-processor iPSC 4Kx2K 
Alliant FX-8 4Kx4K 
CAM-6 256x256 
RAPl(ENS Paris) 512 x 256 
Connection Machine 4Kx4K 
Pipeline Architecture 512x1024 

2.3 x lo6 
0.7 x lo6 
4.0 x 10” 
6.5 x IO6 
lo9 
14 x lo6 per chip (projected) 

Nom. The figure for the pipeline architecture is projected from the speed and 
size of the chip described in this paper. 
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a b 

FIG. 9. Four snapshots of the velocity field of a flow simulation using LGM-1, showing flow from 
top to bottom past a bluff plate: (a) top left, after 1000 generations; (b) top right, after 2000; (c) bottom 
left, after 3000; (d) bottom right, after 4C00. 
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still in use. We performed simulations of flows over variously shaped objects, and 
examples of the results are shown in Fig. 9. The particle density in each case was 
0.2, which we know to yield good results and a relatively small fluid viscosity. We 
estimate the Reynolds number at 40 for these simulations. 

Figure 9 shows snapshots of the velocity field of a flow simulation, taken at 
generations 1000 to 4000, for a 512 x 1024 lattice. The fluid flows from top to 
bottom past a bluff plate and develops asymmetric vortices in the shadow of the 
plate. 

We should mention at this point that the lo-chip pipeline built at Princeton, as 
well as any other scalable pipeline machine, is controlled entirely from the host. The 
user writes a small, simple program in a high-level language that has access to the 
external hardware and the lattice data via a few parameters and a virtual address. 

10. CONCLUDING REMARKS 

The important feature of the pipeline architecture is its extensibility with linear 
speedup. More throughput can be bought by adding identical chips to the pipeline, 
with no additional demands on memory bandwidth or size. 

The lo-chip pipeline built at Princeton is intended primarily as an experiment in 
architecture, rather than a serious tool for lattice-gas experimentation, although it 
is being used daily. As mentioned, the present system is slowed down considerably 
by the interface with the host and its extensibility and speed are both limited by the 
absence of a fan processor. If we follow this approach to achieve really massive 
parallelism, we also need to study the limiting effects of clock distribution and 
reliability in very long pipelines. 
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